3.2.81 \(\int \frac {(1-a^2 x^2) \tanh ^{-1}(a x)^2}{x^5} \, dx\) [181]

Optimal. Leaf size=89 \[ -\frac {a^2}{12 x^2}-\frac {a \tanh ^{-1}(a x)}{6 x^3}+\frac {a^3 \tanh ^{-1}(a x)}{2 x}-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}-\frac {1}{3} a^4 \log (x)+\frac {1}{6} a^4 \log \left (1-a^2 x^2\right ) \]

[Out]

-1/12*a^2/x^2-1/6*a*arctanh(a*x)/x^3+1/2*a^3*arctanh(a*x)/x-1/4*(-a^2*x^2+1)^2*arctanh(a*x)^2/x^4-1/3*a^4*ln(x
)+1/6*a^4*ln(-a^2*x^2+1)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {6155, 6161, 6037, 272, 46, 36, 29, 31} \begin {gather*} -\frac {1}{3} a^4 \log (x)+\frac {a^3 \tanh ^{-1}(a x)}{2 x}-\frac {a^2}{12 x^2}-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}+\frac {1}{6} a^4 \log \left (1-a^2 x^2\right )-\frac {a \tanh ^{-1}(a x)}{6 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 - a^2*x^2)*ArcTanh[a*x]^2)/x^5,x]

[Out]

-1/12*a^2/x^2 - (a*ArcTanh[a*x])/(6*x^3) + (a^3*ArcTanh[a*x])/(2*x) - ((1 - a^2*x^2)^2*ArcTanh[a*x]^2)/(4*x^4)
 - (a^4*Log[x])/3 + (a^4*Log[1 - a^2*x^2])/6

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6155

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Sim
p[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])^p/(d*(m + 1))), x] - Dist[b*c*(p/(m + 1)), Int[(f*x)
^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*d
 + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]

Rule 6161

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Dist
[d, Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[c^2*(d/f^2), Int[(f*x)^(m + 2)*(d +
e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q
, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))

Rubi steps

\begin {align*} \int \frac {\left (1-a^2 x^2\right ) \tanh ^{-1}(a x)^2}{x^5} \, dx &=-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}+\frac {1}{2} a \int \frac {\left (1-a^2 x^2\right ) \tanh ^{-1}(a x)}{x^4} \, dx\\ &=-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}+\frac {1}{2} a \int \frac {\tanh ^{-1}(a x)}{x^4} \, dx-\frac {1}{2} a^3 \int \frac {\tanh ^{-1}(a x)}{x^2} \, dx\\ &=-\frac {a \tanh ^{-1}(a x)}{6 x^3}+\frac {a^3 \tanh ^{-1}(a x)}{2 x}-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}+\frac {1}{6} a^2 \int \frac {1}{x^3 \left (1-a^2 x^2\right )} \, dx-\frac {1}{2} a^4 \int \frac {1}{x \left (1-a^2 x^2\right )} \, dx\\ &=-\frac {a \tanh ^{-1}(a x)}{6 x^3}+\frac {a^3 \tanh ^{-1}(a x)}{2 x}-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}+\frac {1}{12} a^2 \text {Subst}\left (\int \frac {1}{x^2 \left (1-a^2 x\right )} \, dx,x,x^2\right )-\frac {1}{4} a^4 \text {Subst}\left (\int \frac {1}{x \left (1-a^2 x\right )} \, dx,x,x^2\right )\\ &=-\frac {a \tanh ^{-1}(a x)}{6 x^3}+\frac {a^3 \tanh ^{-1}(a x)}{2 x}-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}+\frac {1}{12} a^2 \text {Subst}\left (\int \left (\frac {1}{x^2}+\frac {a^2}{x}-\frac {a^4}{-1+a^2 x}\right ) \, dx,x,x^2\right )-\frac {1}{4} a^4 \text {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )-\frac {1}{4} a^6 \text {Subst}\left (\int \frac {1}{1-a^2 x} \, dx,x,x^2\right )\\ &=-\frac {a^2}{12 x^2}-\frac {a \tanh ^{-1}(a x)}{6 x^3}+\frac {a^3 \tanh ^{-1}(a x)}{2 x}-\frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{4 x^4}-\frac {1}{3} a^4 \log (x)+\frac {1}{6} a^4 \log \left (1-a^2 x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 82, normalized size = 0.92 \begin {gather*} \frac {-a^2 x^2+\left (-2 a x+6 a^3 x^3\right ) \tanh ^{-1}(a x)-3 \left (-1+a^2 x^2\right )^2 \tanh ^{-1}(a x)^2-4 a^4 x^4 \log (x)+2 a^4 x^4 \log \left (1-a^2 x^2\right )}{12 x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 - a^2*x^2)*ArcTanh[a*x]^2)/x^5,x]

[Out]

(-(a^2*x^2) + (-2*a*x + 6*a^3*x^3)*ArcTanh[a*x] - 3*(-1 + a^2*x^2)^2*ArcTanh[a*x]^2 - 4*a^4*x^4*Log[x] + 2*a^4
*x^4*Log[1 - a^2*x^2])/(12*x^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(171\) vs. \(2(77)=154\).
time = 0.14, size = 172, normalized size = 1.93

method result size
derivativedivides \(a^{4} \left (-\frac {\arctanh \left (a x \right )^{2}}{4 a^{4} x^{4}}+\frac {\arctanh \left (a x \right )^{2}}{2 a^{2} x^{2}}+\frac {\arctanh \left (a x \right ) \ln \left (a x -1\right )}{4}-\frac {\arctanh \left (a x \right ) \ln \left (a x +1\right )}{4}-\frac {\arctanh \left (a x \right )}{6 a^{3} x^{3}}+\frac {\arctanh \left (a x \right )}{2 a x}-\frac {\ln \left (a x -1\right ) \ln \left (\frac {a x}{2}+\frac {1}{2}\right )}{8}+\frac {\ln \left (a x -1\right )^{2}}{16}-\frac {\left (\ln \left (a x +1\right )-\ln \left (\frac {a x}{2}+\frac {1}{2}\right )\right ) \ln \left (-\frac {a x}{2}+\frac {1}{2}\right )}{8}+\frac {\ln \left (a x +1\right )^{2}}{16}+\frac {\ln \left (a x -1\right )}{6}+\frac {\ln \left (a x +1\right )}{6}-\frac {1}{12 a^{2} x^{2}}-\frac {\ln \left (a x \right )}{3}\right )\) \(172\)
default \(a^{4} \left (-\frac {\arctanh \left (a x \right )^{2}}{4 a^{4} x^{4}}+\frac {\arctanh \left (a x \right )^{2}}{2 a^{2} x^{2}}+\frac {\arctanh \left (a x \right ) \ln \left (a x -1\right )}{4}-\frac {\arctanh \left (a x \right ) \ln \left (a x +1\right )}{4}-\frac {\arctanh \left (a x \right )}{6 a^{3} x^{3}}+\frac {\arctanh \left (a x \right )}{2 a x}-\frac {\ln \left (a x -1\right ) \ln \left (\frac {a x}{2}+\frac {1}{2}\right )}{8}+\frac {\ln \left (a x -1\right )^{2}}{16}-\frac {\left (\ln \left (a x +1\right )-\ln \left (\frac {a x}{2}+\frac {1}{2}\right )\right ) \ln \left (-\frac {a x}{2}+\frac {1}{2}\right )}{8}+\frac {\ln \left (a x +1\right )^{2}}{16}+\frac {\ln \left (a x -1\right )}{6}+\frac {\ln \left (a x +1\right )}{6}-\frac {1}{12 a^{2} x^{2}}-\frac {\ln \left (a x \right )}{3}\right )\) \(172\)
risch \(-\frac {\left (a^{4} x^{4}-2 a^{2} x^{2}+1\right ) \ln \left (a x +1\right )^{2}}{16 x^{4}}+\frac {\left (3 x^{4} \ln \left (-a x +1\right ) a^{4}+6 a^{3} x^{3}-6 x^{2} \ln \left (-a x +1\right ) a^{2}-2 a x +3 \ln \left (-a x +1\right )\right ) \ln \left (a x +1\right )}{24 x^{4}}-\frac {3 a^{4} x^{4} \ln \left (-a x +1\right )^{2}+16 \ln \left (x \right ) a^{4} x^{4}-8 \ln \left (-a^{2} x^{2}+1\right ) a^{4} x^{4}+12 a^{3} x^{3} \ln \left (-a x +1\right )-6 a^{2} x^{2} \ln \left (-a x +1\right )^{2}+4 a^{2} x^{2}-4 a x \ln \left (-a x +1\right )+3 \ln \left (-a x +1\right )^{2}}{48 x^{4}}\) \(209\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)*arctanh(a*x)^2/x^5,x,method=_RETURNVERBOSE)

[Out]

a^4*(-1/4*arctanh(a*x)^2/a^4/x^4+1/2*arctanh(a*x)^2/a^2/x^2+1/4*arctanh(a*x)*ln(a*x-1)-1/4*arctanh(a*x)*ln(a*x
+1)-1/6*arctanh(a*x)/a^3/x^3+1/2*arctanh(a*x)/a/x-1/8*ln(a*x-1)*ln(1/2*a*x+1/2)+1/16*ln(a*x-1)^2-1/8*(ln(a*x+1
)-ln(1/2*a*x+1/2))*ln(-1/2*a*x+1/2)+1/16*ln(a*x+1)^2+1/6*ln(a*x-1)+1/6*ln(a*x+1)-1/12/a^2/x^2-1/3*ln(a*x))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 164 vs. \(2 (76) = 152\).
time = 0.27, size = 164, normalized size = 1.84 \begin {gather*} -\frac {1}{48} \, {\left (16 \, a^{2} \log \left (x\right ) - \frac {3 \, a^{2} x^{2} \log \left (a x + 1\right )^{2} + 3 \, a^{2} x^{2} \log \left (a x - 1\right )^{2} + 8 \, a^{2} x^{2} \log \left (a x - 1\right ) - 2 \, {\left (3 \, a^{2} x^{2} \log \left (a x - 1\right ) - 4 \, a^{2} x^{2}\right )} \log \left (a x + 1\right ) - 4}{x^{2}}\right )} a^{2} - \frac {1}{12} \, {\left (3 \, a^{3} \log \left (a x + 1\right ) - 3 \, a^{3} \log \left (a x - 1\right ) - \frac {2 \, {\left (3 \, a^{2} x^{2} - 1\right )}}{x^{3}}\right )} a \operatorname {artanh}\left (a x\right ) + \frac {{\left (2 \, a^{2} x^{2} - 1\right )} \operatorname {artanh}\left (a x\right )^{2}}{4 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)^2/x^5,x, algorithm="maxima")

[Out]

-1/48*(16*a^2*log(x) - (3*a^2*x^2*log(a*x + 1)^2 + 3*a^2*x^2*log(a*x - 1)^2 + 8*a^2*x^2*log(a*x - 1) - 2*(3*a^
2*x^2*log(a*x - 1) - 4*a^2*x^2)*log(a*x + 1) - 4)/x^2)*a^2 - 1/12*(3*a^3*log(a*x + 1) - 3*a^3*log(a*x - 1) - 2
*(3*a^2*x^2 - 1)/x^3)*a*arctanh(a*x) + 1/4*(2*a^2*x^2 - 1)*arctanh(a*x)^2/x^4

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 108, normalized size = 1.21 \begin {gather*} \frac {8 \, a^{4} x^{4} \log \left (a^{2} x^{2} - 1\right ) - 16 \, a^{4} x^{4} \log \left (x\right ) - 4 \, a^{2} x^{2} - 3 \, {\left (a^{4} x^{4} - 2 \, a^{2} x^{2} + 1\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )^{2} + 4 \, {\left (3 \, a^{3} x^{3} - a x\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )}{48 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)^2/x^5,x, algorithm="fricas")

[Out]

1/48*(8*a^4*x^4*log(a^2*x^2 - 1) - 16*a^4*x^4*log(x) - 4*a^2*x^2 - 3*(a^4*x^4 - 2*a^2*x^2 + 1)*log(-(a*x + 1)/
(a*x - 1))^2 + 4*(3*a^3*x^3 - a*x)*log(-(a*x + 1)/(a*x - 1)))/x^4

________________________________________________________________________________________

Sympy [A]
time = 0.76, size = 102, normalized size = 1.15 \begin {gather*} \begin {cases} - \frac {a^{4} \log {\left (x \right )}}{3} + \frac {a^{4} \log {\left (x - \frac {1}{a} \right )}}{3} - \frac {a^{4} \operatorname {atanh}^{2}{\left (a x \right )}}{4} + \frac {a^{4} \operatorname {atanh}{\left (a x \right )}}{3} + \frac {a^{3} \operatorname {atanh}{\left (a x \right )}}{2 x} + \frac {a^{2} \operatorname {atanh}^{2}{\left (a x \right )}}{2 x^{2}} - \frac {a^{2}}{12 x^{2}} - \frac {a \operatorname {atanh}{\left (a x \right )}}{6 x^{3}} - \frac {\operatorname {atanh}^{2}{\left (a x \right )}}{4 x^{4}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)*atanh(a*x)**2/x**5,x)

[Out]

Piecewise((-a**4*log(x)/3 + a**4*log(x - 1/a)/3 - a**4*atanh(a*x)**2/4 + a**4*atanh(a*x)/3 + a**3*atanh(a*x)/(
2*x) + a**2*atanh(a*x)**2/(2*x**2) - a**2/(12*x**2) - a*atanh(a*x)/(6*x**3) - atanh(a*x)**2/(4*x**4), Ne(a, 0)
), (0, True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (76) = 152\).
time = 0.42, size = 282, normalized size = 3.17 \begin {gather*} -\frac {1}{3} \, {\left (a^{3} \log \left (-\frac {a x + 1}{a x - 1} - 1\right ) - a^{3} \log \left (-\frac {a x + 1}{a x - 1}\right ) + \frac {3 \, {\left (a x + 1\right )}^{2} a^{3} \log \left (-\frac {a x + 1}{a x - 1}\right )^{2}}{{\left (a x - 1\right )}^{2} {\left (\frac {{\left (a x + 1\right )}^{4}}{{\left (a x - 1\right )}^{4}} + \frac {4 \, {\left (a x + 1\right )}^{3}}{{\left (a x - 1\right )}^{3}} + \frac {6 \, {\left (a x + 1\right )}^{2}}{{\left (a x - 1\right )}^{2}} + \frac {4 \, {\left (a x + 1\right )}}{a x - 1} + 1\right )}} - \frac {{\left (a x + 1\right )} a^{3}}{{\left (a x - 1\right )} {\left (\frac {{\left (a x + 1\right )}^{2}}{{\left (a x - 1\right )}^{2}} + \frac {2 \, {\left (a x + 1\right )}}{a x - 1} + 1\right )}} + \frac {{\left (\frac {3 \, {\left (a x + 1\right )} a^{3}}{a x - 1} + a^{3}\right )} \log \left (-\frac {a x + 1}{a x - 1}\right )}{\frac {{\left (a x + 1\right )}^{3}}{{\left (a x - 1\right )}^{3}} + \frac {3 \, {\left (a x + 1\right )}^{2}}{{\left (a x - 1\right )}^{2}} + \frac {3 \, {\left (a x + 1\right )}}{a x - 1} + 1}\right )} a \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)^2/x^5,x, algorithm="giac")

[Out]

-1/3*(a^3*log(-(a*x + 1)/(a*x - 1) - 1) - a^3*log(-(a*x + 1)/(a*x - 1)) + 3*(a*x + 1)^2*a^3*log(-(a*x + 1)/(a*
x - 1))^2/((a*x - 1)^2*((a*x + 1)^4/(a*x - 1)^4 + 4*(a*x + 1)^3/(a*x - 1)^3 + 6*(a*x + 1)^2/(a*x - 1)^2 + 4*(a
*x + 1)/(a*x - 1) + 1)) - (a*x + 1)*a^3/((a*x - 1)*((a*x + 1)^2/(a*x - 1)^2 + 2*(a*x + 1)/(a*x - 1) + 1)) + (3
*(a*x + 1)*a^3/(a*x - 1) + a^3)*log(-(a*x + 1)/(a*x - 1))/((a*x + 1)^3/(a*x - 1)^3 + 3*(a*x + 1)^2/(a*x - 1)^2
 + 3*(a*x + 1)/(a*x - 1) + 1))*a

________________________________________________________________________________________

Mupad [B]
time = 1.36, size = 246, normalized size = 2.76 \begin {gather*} {\ln \left (1-a\,x\right )}^2\,\left (\frac {\frac {a^2\,x^2}{2}-\frac {1}{4}}{4\,x^4}-\frac {a^4}{16}\right )-\ln \left (1-a\,x\right )\,\left (\ln \left (a\,x+1\right )\,\left (\frac {\frac {a^2\,x^2}{2}-\frac {1}{4}}{2\,x^4}-\frac {a^4}{8}\right )+\frac {3\,a^5\,x-2\,a^4}{24\,a^3\,x^3}-\frac {3\,x\,a^5+2\,a^4}{24\,a^3\,x^3}-\frac {a\,\left (22\,a^3\,x^3-12\,a^2\,x^2+6\,a\,x-4\right )}{96\,x^3}+\frac {a\,\left (44\,a^3\,x^3+24\,a^2\,x^2+12\,a\,x+8\right )}{192\,x^3}\right )-\frac {a^4\,\ln \left (x\right )}{3}+{\ln \left (a\,x+1\right )}^2\,\left (\frac {\frac {a^2\,x^2}{8}-\frac {1}{16}}{x^4}-\frac {a^4}{16}\right )+\frac {a^4\,\ln \left (a^2\,x^2-1\right )}{6}-\frac {a^2}{12\,x^2}+\frac {a\,\ln \left (a\,x+1\right )\,\left (\frac {a^2\,x^2}{4}-\frac {1}{12}\right )}{x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(atanh(a*x)^2*(a^2*x^2 - 1))/x^5,x)

[Out]

log(1 - a*x)^2*(((a^2*x^2)/2 - 1/4)/(4*x^4) - a^4/16) - log(1 - a*x)*(log(a*x + 1)*(((a^2*x^2)/2 - 1/4)/(2*x^4
) - a^4/8) + (3*a^5*x - 2*a^4)/(24*a^3*x^3) - (3*a^5*x + 2*a^4)/(24*a^3*x^3) - (a*(6*a*x - 12*a^2*x^2 + 22*a^3
*x^3 - 4))/(96*x^3) + (a*(12*a*x + 24*a^2*x^2 + 44*a^3*x^3 + 8))/(192*x^3)) - (a^4*log(x))/3 + log(a*x + 1)^2*
(((a^2*x^2)/8 - 1/16)/x^4 - a^4/16) + (a^4*log(a^2*x^2 - 1))/6 - a^2/(12*x^2) + (a*log(a*x + 1)*((a^2*x^2)/4 -
 1/12))/x^3

________________________________________________________________________________________